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ABSTRACT

We calculate in the leading logarithm®approximation to perturbation
theory the complete set of structure functions for inelastic electron,
neutrino, and antineutrino scattering on proton and neutron targets. This
extends our previous calculations of the vWZ function of in'elastic
electron-proton scattering., TheLagrangian studied is that of the
neutral vector glion model-equivalently massive quantﬁm electrodynamics.
We find that, in spite of the logarithmic breakdown of Bjorken scaling
which generally occurs in renormalizable fiell theories, all the structure
function relaticns and sum rules of the parton model and formal light cone
algebra are satisfied to leading logarithmic accuracy in the theory we

study.
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I. INTRODUCTION

In a previous paper1 (hereafter called I) we examined in a renormal-
izable perturbation theory the structure function vW2 of inelastic
electron-proton s:attering. 'The field theory studied was that of a
spin 1/2 proton ccupled to a neutral, massive vector meson field (neutral
vector gluon model). Our calculations were carried out in the Bjorken
limit2 to leading logarithmic accuracy, Strict Bjorken scaling is violated
by the presence of logarithms of the asymptotic variables. These
logarithms were shown to exponentiate when summed to all orders in
perturbation theory.

In this paper we continue our work by studying the second structure
function Wl of inelastic e~p scattering. In addition we introduce a neutron
field and study inelastic ¢-n as well as inelastic v and ¥ scattering on p
and n targets. The neutral vector field is taken to have equal (isoscalar)
coupling to p and n.

We then examine the various relations among the structure
functions and the sum rule constraints which are predicted by the parton
model3’4’ > and light cone6 approach to Bjorken scaling., Such relations
and sum rules are of central importance since they reveal information
about the fundamental fields from which the electromagnetic and weak
currents are constructed. 7 We find that they continue to hold in the
vector gluon model in the leading logarithmic approximation in spite of

the breakdown of Bjorken scaling. In a sense therefore the structure
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function relations and sum rules have a greater generality than might

have been expected from work with models which possess strict Bjorken
scaling. This possible greater generality remains circumsecribed,
however, by the fact that all perturbation theory evidence indicates

that the relations and sum rules do not hold when one sums next-to-leading
logarithms.

The plan of the paper is as follows, In Section II we fix our notation
by recalling the standard definitions of the structure functions of inelastic
lepton-nucleon scattering, We also state the parton model light cone
relations and surn rules for the structure functions after appropriate
modification to match the quantum numbers of the fields which we use.

In Section III we start by reminding the reade. of the philosophy of the
leading logarithm approximation which is central to our work, We then
give the perturbation theory results for the structure functions and compare
to the relations and sum rules of Section II. Algébraic details are reserved
for Appendix A. In Section IV we briefly discuss our results. In Appendix
B the physically less interesting field theory of charged spin 0 particles
coupled to a neutral vector particle is considered., We also correct a
minor error involving this scalar case which was made in Appendix B

of I.
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II. KINEMATICS AND STRUCTURE FUNCTIONS

The cross section for inelastic electron nucleon scattering
e(£) + N(p) - e(£*) + anything, is proportional to the imaginary part of

the spin-averaged amplitude for forward virtual photon-nucleon scattering

lg-X < - ,
- L Sd‘*xe e [ 300, Tl N ’3)>5)Dm
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LW 210 (b MZM[ ‘ngv)
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(Fig. 1)
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where g = £ -¢ “is the virtual photon four momentum, —Qz = +q2 its mass,
and v = pa(£-~ 27}/ m its lab energy. The nucleon mass is denoted by m.
Similarly the crosg section for neutrino (antineutrino) scattering on
a nucleon target,v{£) + N(p) -~ u{£”) + anything, is proportional ‘co7
iI'W\ IP”(QZ’U)) = :nrg dxe Z(}\J(m[\) (9, j (0)]IN(b>>g i
UN(DN) cuug
UN(BN)

= W (@51) (hﬁ' k-zﬁ Z@(h—‘ ) %—éfv)

N(TTA)
+W1v c?e%v)( Qo + f“f’o)

¢ VHNCTN)

Pt W5 (@) € va@f’g (22)

The omitted terms in Eq. (2.2) contribute terms to the cross section

which are proportional to lepton masses and thus may be ignored. In
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+ -
Egs. (2.1) and (2. 2) JHY’ Jp. s JH are the electromagnetic, weak charge
raising, and weak charge lowering currents respectively. The latter two
contain both vector and axial vector pieces.

The predictions2 of Bjorken scaling are that in the limit QZ - o,

Vo X =@ -1, Q2/(2mv) fixed, one has

W @ 0) > F oo+ Ol) (23a)
’zJ\/l/_l (@Zju) - ﬁf)ﬂ)—{— CC/) (2.3b)
W;(Q0) > Eco + C( V) (2-3¢)

A. Spin Structure

To proceed further one must know something about the structure
e
of the currents JMY’ JpL . If these currents are bilinear forms in a

8
spin 1/2 field the Callan-Gross relation holds in the scaling limit
Koy = 2x F(x) @4)

for ep, en, vp, ¥vp, vn, and vn scattering. Two equivalent statements of

Eq. (2.4) are

Qi [}m W, Q%) -2x DW, (§3 u{] ~O(Yp) (')
X fired

Do Re@0) = OC) (24")

X Jcd
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where R = ch(Qz, v )/cT(QZ, v} 15 the ratio of the scalar and transverse
cross sections of Hand. ? For this reason the small experimental value 1o
of R is taken as evidence that the electromagnetic current is predominantly
constructed out of spin 1/2 fields.

For a current bilinear in spin 0 fields ¢ne has in place of Eq. (2. 4)8
HEo)=o. (2-8)

Equivalently

[llh @02 = o) (25')

U-’-?OO

X fied
,@M R (Q v = O(l) . (2.5")

D oo

fupﬁl{
B, Internal Symmetry Relations

For simplicity we set the Cabbibo angle equal to zero. In this

+ -
limit Jp_ and J are related by an isotopic spin rotation and one has

(vb) Do (0Om)
W, ,)ccazu)m W, (&dv) 5 i=12,3,
(- 6)

In most parton model and light cone discussions the basic spin 1/2
fields are taken to be an SU(3) triplet with quark guantum numbers, In

such a case one has the Llewellyn Smith relation5

PR L (R EPP) @7)
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as well as the inequalityS

Evﬁﬁ“ﬁb . ig (EQP+F6M) o 2.6

1

The inequality in (2. 8) becomes an equality in the limit that none of the
momentum of the proton and neutron is carried by strange quark consti-
tuents.

An additicnal relationship

El.e\v’ Eemz _(_,';_ ( Fz-'ﬁIO_ Eu}a) 29)

has been suggested“ which requires assumptions beyond the usual parton
model or light cone hypotheses. For the status of this relation in the
perturbation theory under discussion see Ref. (11).

If instead of an SU(3) triplet of quarksone constructs the currents
out of an SU(2) doublet of nucleons it is trivial to see that the above

relations become

R R™ = 3 (FPPeR), (2:8)

and

, (29)

C. Sum Rules
The primordial sum rule of inelastic lepton-nucleon scattering is

the Adler sum rule12
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| -
Th 2 vp
o
As the form of Eq. {(2.10) indicates this sum rule holds without reference

to Bjorken scaling. It requires for its existence only the SU(2) x SU(2)
algebra of the weak charge densities along with a convergence hypothesis.
Using a model for the commutation relations of the space componen.s

of the currents Bjorken has derived the "backward" sum rule’?

1 —
Sd)( L’m Wiu(k)Qz,v)-/m \ULD}ZQ?U)J =1
o (2.1

This holds for currents constructed from Spiﬁ 1/2 fields and is independent
of their charges. Given scaling, Eq. (2. 3), and the Callan-Gross relation
(2.4) it is clear that the Bjorken sum rule (2. 11) is a conseguence of the
Adler sum rule (2. 10),

Consider next those sum rules which are sensitive to the guantum
numbers of the constituent fields, First is the Gross-Llewellyn Smi’ch4

sum rule

—

H
&d* (777 5= - ¢.
> (2.1)

For the SU{2)} doublet case this reads instead

Vax (FPhg*)=—2.  @nY

Finally one has the sum rule
|

e-1e Y2 (B78E)-1(8%E™)] @iy

(b}
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where the left hand side may be interpreted the fraction of the protonts
momentum which is carried by neutral "gluon' constituents. The value of
¢ depends on the internal dynamics of the proton as well as the structure
of the currents and is therefore a priori unknown. Iq. (2.13) is to be
regarded as a way to measure ¢, the only constraint being the inequality
0= e = 1. The sum rule (2. 13) holds in the parton model and is inde~
pendent of the form of the interaction since, of course, the usual parton
model manipulations assume that the interactions among constituents may
be neglected on che time scale which is important in the deep inelastic
region. Egq. (Z.13) has been derived by formal field theory-light cone
’cechniquesM in the neutral scalar and pseudoscalar gluon models only,
For our case of a SU(2) doublet of spin 1/2 ficlds Eq. (2. 13) takes the
form 1
v )
E=1+ |dx (FZUR A 7’}’) -(g ei 5 é“‘)} . (213)

o
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III. PERTURBATION THEORY RESULTS

Before stating the results of our perturbation theory calculations let
us first recall the spirit behind such calculations, One wishes to calculate
the imaginary part of the forward virtual Compton amplitude as iliustrated
in Fig., 2. The ‘ntermediate states, which are ultimately summed over,
may be characterized by a multiplicity n, as well as other labels. (The
multiplicity n, could be further broken down iato its fermion and boson
components, but we need not detail this here.) The leading logarithm
approximaticn waich We1 use is defined by the following procedure:

(i) first fix r1i (n_1 =1, 2, ...), (ii) then identity in each order of perturba-
tion theory those diagrams which are asymptotically leading in the Bjorken
limit, (iii} calculate the leading (logarithmic) term of these diagrams,

(iv) sum the results to all orders of perturbation theory, and (v) finally
perform the surm over the intermediate state multiplicity n,.

It is clearly possible that in a given order of perturbation theory
cancellations occur between terms cofreSponding to different n,. Indeed
this partially happens as one sees in Eq, (4.19) of I. (We discuss the
physics behind this cancellation below Eq. (3.2) }). Therefore, if instead
of our procedure one asks in a given, fixed order of perturbation theory
for the leading contribution after the sum over n, has been carried out,
and then sums this to all orders of perturbation theory, the results and
list of dominant diagrams need not coincide with the results we find, This

latter procedure is in fact the one adopted by Gribov and Lipaﬁcov15 in their
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work on the vector gluon model (as well as the pseudoscalar model) and
accounts for the difference when their results are compared to ours., !
One may verify that in the region x =1, Qz(x—i) >>m2 where the two
procedures are essentially equivalent (see the discussion of "scale"
below) the expression for vWZ given in Ref. (15) coincides with our result
in I,

It should e emphasized that the issue tere is not the question of
whether the summations over multiplicity and orders of perturbation theory
commute. Rath:r one is discussing the option of identifying leading terms
before or after carrying out the summation over n, . 17 Obviously if one
calculated and summed all subleading logarithms in addition to the
leading logarithms the above distinctions would be irrelevant. However,
since such a complete calculation is hopelessly difficult given the currently
available calculation techniques, we are confronted with the task of gleaning
some insight from less complete perturbation calculations if we are to use
field theory at all. Given this situation it is not obvious which particular
approximation procedure provides the best physical insight. We feel that
our choice as outlined above and used in I is physically sensible and a good
one. It allows us to examine in detail all properties of the final inelastic
states and to see how these pieces fit together to give the final expression
for the inelastic scattering. In particular, as discussed in I, we reveal
the interplay between the asymptotic falloff of the elastic form factor and

the buildup of the inelastic structure functions. Related to this as shown
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in I is a multiplicity growth ~ lanz. 18 Finally our results are fully

consistent with the general properties that the complete answer should
have; there are no ghost cuts or singularities, and Lorentz invariance and
gauge invariance are maintained throughout.

The resull for sz obtained in I is

,Q;,im (U\Vzeptﬁﬁv)) = f € (X36%)

S =4 ;)g Be [@%E")J 2{p] 2 ‘MZ{:@%X)]-Q/\ 'Qul!-— %;‘]
(3.1)

where u is the -nass of the vector particle, e is the coupling of the vector
meson to the nucleon, and \ = ezl{iémz). The intermediate states which
contribute to Eq. (3. 1) consist of a single fermion carrying all but an
infinitesimal fraction of the momentum brought in by the external current
and ni—i vector mesons which are relativistic but nevertheless ''soft"
compared to the fermion. Typical diagrams are shown in Figs. 3 and 4.
For a given value of n, states having f!ermion—antifermion pairs, whether
from closed loops or from Z graphs, are smaller by at least a logarithm
in each order of perturbation theory than the states included in q. (3.1).
(Diffractive processes correspond to diagrams with closed fermion loops
and warrant separate attention in any case.)

The result (from I) before carrying out the sum over n, but after

summing over all orders of perturbation theory is
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Mo 2 2. 20 g*
o] 15

X { /\MZ[Q (i1-x) |2
(41"‘2) ° (_3’2_)

By inspection of the argument of the exponent in ¥q. (3. 1) we see that the

Z

1n2(Q/H2) terms cancel leaving sz ~ exp{4 \n (%) In{1-x) + Zhlnz(l—x)}.

This is the partial cancellation alleged above and brings us to the important
notion of '"scale".

In any leading logarithm calculation there is a fundamental ambiguity
in the scale factor (call it o) used to make the argument of the logarithm
dimensionless. That is, if ¢ and o, are two different scale factors then

1 2
for QZ

T | _ 2
)= 2 () () + ()

to leading logarithmic accuracy. The correct scale factor can be deter -
mined only if next-to-leading logarithms are kept. In our work we have
chosen o~ |.1.2 in order to give it the proper dimensions. Since we treat
mzlgz = 0(1), 0 ~ m? would work equally well, In the inelastic structure
functions one has an additional feature. In general the scale owill have
x dependence. As we discussed in I the region x =1 plays a special role
in our work so we are careful to determing properly the x dependence of
oin this region. That is, ! we treat 1n2 (Qz/pz), ln(QZ/pz)lnH-x) and

lnz(i—x) on the same footing. 19 This is the origin of the 1-x factors in
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Fgs. (3.1} and (3. 2) and the reason we do not get a zero answer after the
cancellation in Fg. (3. 1).

The Poisson form of Eq, (3. 2) is reminiscent of the infrared
structure of radiative corrections in ordinary QED with massless photons
and indeed has a very similar origin. The same applies to the partial
cancellation in Eq. (3.1). It is, in disguise, nothing more than the well
known cancellat.on of the infrared divergenccs between real and virtual

photon processes. Let us turn to our new recults,

A. Spin Structur=
InlI W2 was calculated by computing the p = v = (+} component of

Im T To select out W, we compute the p = v = 1 component. In each

(ep)’

order of perturbation theory, as we show in Appendix A, one finds that

11
the numerators in the Im T calculation are universally proportional

(ep)

++
to the numerators of the Im T case, The Feynman denominators are

(ep)

obviously the same, so all the work of I may be carried over unchanged.

One finds

R e = L Ee‘;xjcez)[l‘r OC‘/U)J (3:3)

2ZX

where

Eoxe?) = U ["W\Li'l (& b)] '

Q>0

X -f.cgui (3.4)

Since our calculations are carried out only to leading logarithmic

accuracy, the relation (3. 3) cannot be trusted beyond this accuracy. It
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is natural to ask if the relation (3, 3) might in fact hold to O(1/v) if
subleading logarithms are summed as well. The answer is no and
follows from explicit calculation of all O(M\) diagrams. 20 Namely, in
o) Fi and F2 separately behave ~ 1nQ2 but the appropriate difference

is non vanishing

2 X F,;%E)'CEZ) — Edzx;@"-‘)] = ot #0 .
(3:3)

There is no reason to hope for a better resull in higher order., Thus we
see in perturbation theory, without cutoffs, the Callan-Gross relation (2. 4)
is satisfied but in the weakest possible way,

Because the neutron has no electric charge, and since pair produc-
tion does not contribute in the leading logarithm approximation as explained

above, we have to the same accuracy as Eq, (3. 1).

€yl ) &yl
Ehgen = E“hgay =

(3:6)

Similarly since the weak currents are
e T -_
J = Peodl-¥5) 00 (3.7)

and

T = M) ?)l/u(’lﬂ?fé) box) (3.8)

we have by the same arguments which lead to Eq. (3. 6)
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'UP ﬁﬂt v
=R =0 = 123. (3.9)
To calculate ]:T‘2 P and FivP we look atthe p=v=+andp=v =1
components respectively of Im T(F;;) . The calculation is identical to that
in I so one knows immediately
TP, um ~ep
o A2y i o — 2
B os@h =B "oG@h) = 2§ e ey (3.16)

In Eq. (3. 10) the factor of 2 arises because the square of the vector current
and the square of the axial vector current cortribute equally. (See Appendix

A.) In direct parallel to Eq. (3. 5) one has
2X FiP(xd-Qz) = E\f(xjcgz)[u- OCVQ)J @)

where 53:-__ 'B'}:l/ VAL »

Finally the vector-axial vector interference structure function F3

may be picked out by evaluating Im T 12 ; we find {see Appendix A)

(vp)

DL e }’

P
5 ;09 Bosehy= "2 K 056,

(3)2)

B. Internal Symmetry Relations

Combining Eqs. (3. 3), (3.6), (3.9), and (3. 12) one sees that the
Llewellyn Smith equality (2. 7 7) is satisfied in the leading logarithmic
approximation. So also is his relation (2. 8”) (now an equality) once
Eqgs. (3.3), (3.6}, (3.9), and (3. 11) are used. Just as with the Callan-

Gross relation (see Fq. (3. 3)), the Llewellyn Smith relations (2.77) and
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(2. 87) are satisfied to leading logarithmic accuracy only.

C. Sum Rules

With the exception of the Adler sum rule, the sum rules discussed
in Sec. II put stringent demands on perturbat:on theory, Namely certain
integrals of the structure functions over x are required to be independent
of QZ in spite of the fact that the structure functions themselves do not
scale.

In I we evaluated the two integrals
|

LG = \dx B oged) @12

o

and
\"\z Sre— i ( r i ' )
) L@ = )2 Foxia) (3.14)

)
using Eq, (3.1) for Fz. In both integrals the region x = 1 is dominant and

we have to leading logarithmic accuracy

T (gh= 1 @5)
I @-1, 316

We note that Ei and 22 are independent of Q2 to the accuracy of our

calculation.

Using Egs. (3.9), (3.10) and (3. 16) the Adler sum rule (2. 10} reads
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2y _

and is therefore satisfied to leading logarithmic accuracy. Similarly the
"backward" Bjorken sum rule (2, 11) is satisfied. With the help of Egs. (3.9),

”~

(3.12), and (3. 15) the Gross-Llewellyn Smith sum rule (2, 12) reduces to

~2 'ZZCQ?‘) =-2. (3.18)

and is therefore satisfied.
Lastly we have the sum rule (2.137). Using Egs. (3.1), (3.6), (3.9)

and {3. 10) we have
e=1-[2 T - 6] = 0. G.19)

Thus from Eq. (3. 15) we learn that the gluons in the neutral vector meson
theory carry zero fraction of the nucleon's momentum ih the leading
logarithmic approximation. This is in complete accord ﬁvith our direct
calculation of the gluon momentum, Eq. (5.6) of I. A formal field theory
derivation of Eq., (2.137) (or equivalently Eq. (2.13) ) has not yet been
achieved for the vector gluon theory. This difficulty may be related to
backward travelling partons in the parton model language. 21 We see in
the leading logarithm approximation, at least, there are no problems. The
gluons carry a vanishingly small fraction of the nucleonfs momentum and
Fqg. (2.137) is satisfied in the same way that all the other sum rules are

satisfied.
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IVv. COMMENTS

Sec. III already contains extensive discussions of our methods and
results. Rather than repeating this discussion here let us instead list a
few directions in which our work may be exteniled. It is natural to ask
what can be done about the violation of Bjorken scaling which comes from
InQ2 factors in each order of perturbation theory. Such logarithms seem
characteristic of all renormalizable (as opposed to superrenormalizable)
field theories.

One can, in the spirit of Drell, Levy, and Yan22 impose an ad hoc
transverse momentum cutoff and investigate the resulting model. Arbi-
trary modifications of field theory are always hazardous, but we will
nevertheless report on the cutoff vector gluon model in a subsequent paper.

A physically more satisfactory way t‘o generate the damping needed to
obtain Bjorken scaling is to realize the target nucleons as bound states of
some set of elementary particles, say an SU(3) triplet of quarks. (A
heuristic treatment of nucleons as a three guark system can be found in
Ref. (11).) This would remove the perhaps objectionable feature that ‘the
nucleons in our work so far are bare particles clothed in a cloud of
neutral vector mesons and are not truly composite. Important preblems
would still remain, nevertheless. Composite nucleons made of point-like
particles, as for example in the Bethe-Salpeter model of Drell and Lee, 23

are still likely to violate scaling when meson emission from the point like

constituents is included. We will comment further on this point in our
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coming paper on the cutoff field theory model. Perhaps an infinitely
composite picture, analogous to the one used by Stack24 to discuss elastic
form factors, is required to achieve Bjorken scaling.

An alternative and exciting possibility is to return to the unadorned
neutral vector gluon model and to adopt a poin: of view analogous to that of
Johnson, Baker ind Willey. 25 These authors have investigated the question
of whether or no ordinary quantum electrodynamics can be a self-consistent,
finite field theory. In particular one cannot help but wonder if the eigenvalue
condition which they find necessary for finite QED might simultaneously

gecure Bjorken scaling.



~22=- THY - 33

APPENDIX A

In this appendix we present the algebraic details behind the results
quoted in Sec. III. All calculations are carried out in the notation and

reference frame of I. Namely we use the +, - notation

a'= (ah a0l a)= (arad ajal ate)- (A&, &)
(A.D)

where a is any fcur vector. The frame is fixed by

b= (1, E, ) (A.2)

3= (00533),6,6, 20 ) % (6,6, G, 2]
@3)

where p is the momentum of the target nucleon and q = £ -£7 is the
momentum transfer from the lepton system; Fig. 1. The quantity SN
is the square of the center of mass energy of the initial lepton-nucleon

pair, The momentum of any produced particle may be written
A

—>
M . LU PR N )
ji’i;: (X‘-) )Z‘-/ LX‘: - /. (A'L}')

(Note that in writing Eqs. (A.2), (A.3) and (A.4) we have scaled the
+ and - components to make the former dimensionless and to give the
latter dimensions of mass squared.)

In terms of this notation it is clear from LEgs. (2.1) and (2. 2) that

++y | T

, 1" — T :
:]—'E tJ-.--I"V\T \,T_ - »V' _ qué)
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for T = C/_'An‘j ’UU [L’LLC{A ’quU

and IM.TLL\ -t W‘ 0.7)

TC 2 21N
Joo = v ond TN .
For the Bo:n term (Fig. 5) Eqgs. (3. 3), (3.10), (3.11) and (3. 12) are

trivial to verify., Consider Fig. 3(a) which is one of the diagrams which

makes a leading contribution in O( A},

IMTHI:}) B lb‘lt’- (41‘4*»1.).86{)(' \odf jdzlﬂ gdsz b1~ 3)

- 2 v
X E(Q_ I('_P) S( b_i.?..“ + ki"’“’ —n 2w NF(AQ)
¢ g D

where

= [ (2] [ (g St (A0

N =T {2 T o) o) Y Uk, ) e |

(A19

+
In I we showed that in computing the leading term of Ne one may make the

and

)i>+w\>H’-=y'X- .
rb+<g+m—§fg-—*? QY o
e ()
W*””‘“‘*H’*i le = - le
- IA-HM > ﬂ L/ = 3 (I-%)B’
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Thus to leading order

NG = QR T [yt Y
= [LQC-X,) | (A1)

11
For N ep the leading term comes from

b rwm > d) > > iy
wi*%*\”\ﬂ\ - g =>4 (2mD) 2{

"""’B,()L é/r (b/ooo )
e -‘:»;g-:a CZIW\D)Q)}

Pty em— p-, »L 0 X0y,

Hence to leading order
e
L (20w0) (g )'T;-{ ATy 1,- +}
Nq,, = 33 f 2{ X X
= Sl U-X) (2m) = Sowv U=%) (R/X) (2)

Thus for Fig. 3(a)
zx(«mk}q,)“ (w0 Me}a) (A13)

which in turn implies Eq. (3.11).
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For the general case, Fig. 4(a), the numerator trace is of the form

(dropping terms ~ m) N )
Noy="Tr Jor ¥ "(beq - zM oo (heg=Z Y% ]

(A.1d)
Hence the leading terms are

e} = T;‘%w Y G ‘))2) -Q¥) Xt”’f (A-15)

an

N@P Ty {.M y(meX )ooo nm) +)X“-§ @,Hp)

where all unwritten terms are identical in the two traces and consist of a
geries of y+'s interlaced with y_'s. After successive anticommutation to
bring the yz's and yils together in qs. (A, 15) and (A.16) respectively one
establishes Eq. (A.13) as a general result and hence thé Callan-Gross
relation.

Consider next the structure functions for neutrino scattering, We
will illustrate the calculation for Fig. 3(a) only since the extension to the

general case is obvious from the above., In place of (A. 10) one has

N F:*n:{ (Pean ¥ 6350 ( B ) Y (o) Y
K- - Va | @)

As before we may drop all terms ~ m, and therefore after running the

1- Yg factors together we have
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v b

N;;F:QNGP- 2Tr2 0 W)Y W U)W } )

(B-13)

For N?p and N ;; the second term in Eq. (A. 18) gives a negligible
contribution which moreover vanishes after th: phase space integration
over 1?1 is carried out in Eq. (A.8). Thus the results quoted in Eqs. {3.10)
and (3. 11) are ecstablished.

For N;s the first term in Eq. (A. 18) is negligible; the second may

be simplified to

N = T8 D Y bt 0001
— MmUY CQQ'CI—XJ/X., (F].lq)

Therefore with the help of Egs. (A.5), (A.7), and (A, 11) we establish the

1

result quoted in Eqg. (3. 12) of Sec, IIL
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APPENDIX B

Here we briefly examine the field theory of charged spin zero
particles (say pions) interacting with massive neutral vector mesons. We
consider an isotriplet of charged pions interac:ing with the isoscalar vector
field. The theor: is much simpler than the spinor theory since an axial
current cannot be constructed which is bilinear in the spin zero field.

In Appendix B of [ we calculated in the leading logarithmic approximation
+

FZETT . Here we correct a slight error in that calculation which was made
when we neglected the "seagull' diagrams.
In lowest nontrivial order diagrams which make leading contributions

++
to Im T(ewi are the ones shown in Fig., 6(a-d). Diagram 6(a) was

)

considered in I and has a numerator

N+?‘(o&) = S’QZ (2-%) CI-X‘)/X o (_E.I)

The denominators and all other factors are the same as in the spinor case.
{See Eqgs. (A.8-A.10).)

The ”seagu'll” diagram 6(b) has a numerator

N eb) = -8 (1%)(2-x), (B2)
Furthermore, except for lacking a denominator factor
[ (p+q)2—rn2] = Qz(i—x)/x diagram 6(b) has a structure identical to that of
6{a). The sum of 6(a) and 6(b) is therefore found by replacing N++ of the

spinor calculation by
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l\lH: N*(ba) + C’Gj_c_':_x) N*76Y)
X

= 8% (FX)(2-X) (B.3)

After carrying out the phase space integrations in Eq. (A, 8) the value of

Xi ig fixed to be x1 = {-x. Thus we find

— et X — €

AN C LA B4
The pattern generalizes in an obvious way; thns Eq. (B. 4) holds in every
order of perturbation theory. Egq. (B.4) differs from the result quoted in
I by a factor of x. Since the sum rules are dominated by the region x = 1
they are unaffected.

One may alternatively identify vWZ by computing Im Tzz. If one

does this one finds that the leading contributions come only from Fig. b(a)
and not from the "seagull! Fig, 6(b). Of course, the result is identical to
that given in Eq. (B.4), as gauge invariance dictates.

+

» 1
To calculate Wie.rr we consider Im T(eé:). Diagram 6({a) gives a
vanishing contribution and all seagull diagrams give contributions which

2
are down by a power of @ . Thus

+
F:" eic = O QB,S)
in the leading logarithmic approximation. This is the Callan-Gross
relation8 for currents constructed from spin zero fields.
The neutrino scattering results are related to the electron scattering

results by a simple Clebsch-Gordan coefficient. Namely
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P

~

.
-~
I

—
| S

(B.L)

+ Q

- 0
where ¢ = %7 , o7 , vwr , vr and

F.P =0 LB'/)

- -+ .
for p= v , vr . Moreover, because of the absence of an axial vector

contribution ,

3 - (88)

in all cases.
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FIGURE CAPTIONS
Fig. 1 Kinematics for lepton-nucleon inelastic scattering.

Fig. 2 Diagram representing the discontinuity of the forward virtual
Compton amplitude. The intermediate states are on shell and

have a multiplicity ni.

Fig. 3 Diagrams of 0( \) which make a leading contribution in the
Bjorken limit, The vertical line represents the unitarity cut and

crosses those lines which are on shell.

Fig. 4 Leading diagrams in the general case, We sum over all per-
mutations of the emission of the { photons on the left side and
all permutations of absorption of the r photons on the right.

(a) All vector mesons are real. (b} Diagrams which have some
virtual vector mesons which build up the elastic form factor

corrections to the external current vertices.
Fig. 5 The Born term for inelastic lepton-nucleon scattering,

Fig. 6 Leading diagrams in 0{A) in the scalar-vector field theory.
In addition to the ones shown one has virtual photon diagrams

as in Fig. 3(b) and (d).
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