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ABSTRACT 

We calculate in the leading logarithm’approximation to perturbation 

theory the complete set of structure functions for inelastic electron, 

neutrino, and antineutrino scattering on proton and neutron targets. This 

extends our previous calculations of the vW2 function of inelastic 

electron-proton scattering. TheLagrangian studied is that of the 

neutral vector gllon model-equivalently massive quantum electrodynamics. 

We find that, in spite of the logarithmic breakdown of Bjorken scaling 

which generally occurs in renormalizable fiel(I theories, all the structure 

function relations and sum rules of the parton model and formal light cone 

algebra are satisfied to leading logarithmic accuracy in the theory we 

study. 



-3- THY - 33 

I. INTRODUCTION 

In a previous paper1 (hereafter called I) we examined in a renormal- 

izable perturbation theory the structure function VW 
2 of inelastic 

electron-proton s :attering. The field theory studied was that of a 

spin l/2 proton cc’upled to a neutral, massive vector meson field (neutral 

vector gluon model). Our calculations were carried out in the Bjorken 

limit6 to leading logarithmic accuracy. Strict Rjorken scaling is violated 

by the presence of logarithms of the asymptotic variables. These 

logarithms were shown to exponentiate when summed to all orders in 

perturbation theory. 

In this paper we continue our work by st:ldying the second structure 

function Wl of inelastic e-p scattering. In addition we introduce a neutron 

field and study inelastic e-n as well as inelastic v and G scattering on p 

and n targets. The neutral vector field is taken to have equal (isoscalar) 

coupling to p and n. 

We then examine the various relations among the structure 

functions and the sum rule constraints which are predicted by the parton 

model 3,4,5 and light cone 
6 

approach to Bjorken scaling. Such relations 

and sum rules are of central importance since they reveal information 

about the fundamental fields from which the electromagnetic and weak 

currents are constructed. 
7 

We find that they continue to hold in the 

vector gluon model in the leading logarithmic approximation in spite of 

the breakdown of Rjorken scaling. In a sense therefore t.he structure 



-4- THY - 33 

function relations and sum rules have a greater generality than might 

have been expected from work with models which possess strict Bjorken 

scaling. This possible greater generality remains circumscribed, 

however, by the fact that all perturbation theory evidence indicates 

that the relations and sum rules do not hold when one sums next-to-leading 

logarithms. 

The plan of the paper is as follows. In Section II we fix our notation 

by recalling the standard definitions of the structure functions of inelastic 

lepton-nucleon scattering. We also state the parton model light cone 

relations and sum rules for the structure functions after appropriate 

modification to match the quantum numbers of the fields which we use. 

In Section III we start by reminding the reade; of the philosophy of the 

leading logarithm approximation which is central to our work. We then 

give the perturbation theory results for the structure functions and compare 

to the relations and sum rules of Section II. Algebraic details are reserved 

for Appendix A. In Section IV we briefly discuss our results. In Appendix 

B the physically less interesting field theory of charged spin 0 particles 

coupled to a neutral vector particle is considered. We also correct a 

minor error involving this scalar case which was made in Appendix B 

of I. 
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II. KINEMATICS AND STRUCTURE FUNCTIONS 

The cross section for inelastic electron nucleon scattering 

e(fl ) + N(p) - e(1’) + anything, is proportional to the imaginary part of 

the spin-averaged amplitude for forward virtual photon-nucleon scattering 

(Fig. 1) 
~YIJ-p:~ 1 

I s 
= 1 

;&‘x 
-IT (9N m 

dY;r e -(tq) i C q*j, ~&I i rJ ( P))sb~w 
a.;, 3’ 

2 
where q = 1 -1 /is the virtual photon four momentum, -Q = +q2 its mass, 

and v = p.(P- !‘)/m its lab energy. The nucleon mass is denoted by m. 

Similarly the cross section for neutrino (antineutrino) scattering on 

a nucleon target,v(! ) + N(p) - (~(1 ‘) + anything, is proportional to7 

. . 
=UV /$&z P”G?w [)p- F fp) @Ll - !z$ fzJ 

-+u:““:~‘u., pJpLi + pf$) 

$2 w,z’“‘~&) ep,,, pdf f cz?a 

The omitted terms in Eq. (2. 2) contribute terms to the cross section 

which are proportional to lepton masses and thus may be ignored. In 
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Eqs. (2.1) and (2. 2) J ‘, J ‘, J - are the electromagnetic, weak charge 
w P (1 

raising, and weak charge lowering currents respectively. The latter two 

contain both vector and axial vector pieces. 

The predictions2 of Bjorken scaling are that in the limit Q2 + co, 

-1 “-+co, x=w = Q2/(2mv) fixed, one has 

md’% tQ:d + jym $- obj (23Q) 

uw~Q:u) -2 F,f%J+- OC’IL) 

u$j c&A -3 jp> ~+ c: (-y&j 

A. Spin Structure 

To proceed further one must know something about the structure 

of the currents J ‘, J 
* 

EL I*’ 
If these currents are bilinear forms in a 

spin l/2 field the Callan-Gross 
8 

relation holds in the scaling limit 

p1 = 2x ip) 
for ep, en, vp, Vp, vn, and in scattering. Two equivalent statements of 

Eq. (2.4) are 

~~~~~~,Wi@J -2x vLv&Lil = J cc ‘/v> 
and c2,4y) 
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where R = qJQ2. v 1 /o. .(Q2, v) is the ratio of the scalar and transverse 

cross sections of Hand. 9 For this reason the small experimental value 10 

of R is taken as evidence that the electromagnetic current is predominantly 

constructed out of spin i/2 fields. 

For a current bilinear in spin 0 fields cne has in place of Eq. (2.4)’ 

Equivalently 

f-g& Q;g = . 

&s ) 

gY?J) (a.5 ‘) 

OC’h) 0 C?S ‘0 

B. Internal Symmetry Relations 

For simplicity we set the Cabbibo angle equal to zero. In this 

+ 
limit J and 3 - 

P 
are related by an isotopic spin rotation and one has 

p(+~~$$] -. Jyg:, 3 i31,J3. 
i 

(2’. 6), 
In most parton model and light cone discussions the basic spin l/2 

fields are taken to be an SU(3) triplet with quark quantum numbers. In 

such a case one has the Llewellyn Smith relation 
5 

Fek 1 - fy= J- ($k F13t;b) 
I2 c 71 a. 
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as well as the inequality5 
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$+ $b 5 .r8 [cek+ ce+y p 5 
The inequality in (2. 8) becomes an equality in the limit that none of the 

momentum of the proton and neutron is carried by strange quark consti- 

tuents. 

An additicnal relationship 

get F,e7(= * ( p- F;+) 
has been suggested 

11 
which requires assumptions beyond the usual parton 

model or light cone hypotheses. For the status of this relation in the 

perturbation theory under discussion see Ref. (11). 

If instead of an SU(3) triplet of quarksone constructs the currents 

out of an SU(2) doublet of nucleons it is trivial to see that the above 

relations become 

F”k- Fe* 
4 1 

.=_I- [F, +- p)) 

and 
tek+ ce4 =+-- rFy~-ffi~~)~ 

0 0.9 ‘,, 
C. Sum Rules 

The primordial sum rule of inelastic lepton-nucleon scattering is 

the Adler sum rule 
12 
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(2,10) 

As the form of Eq. (2.10) indicates this sum rule holds without reference 

to Bjorken scaling. It requires for its existence only the SU(2) x SU(Z) 

algebra of the weak charge densities along with a convergence hypothesis. 

Using a model for the commutation relations of the space componens 

of the currents Bjorken has derived the “bat kward” sum rule 13 

s kk! i-n,u:~~~z,~)-iljlj~~~:li~ = 1, 
0 (Z2H) 

This holds for currents constructed from spin 1/2 fields and is independent 

of their charges. Given scaling, Eq. (2. 3), and the Callan-Gross relation 

(2. 4) it is clear that the Bjorken sum rule (2. ii) is a consequence of the 

Adler sum rule (2. 10). 

Consider next those sum rules which are sensitive to the quantum 

numbers of the constituent fields. First is the Gross-Llewellyn Smith4 

sum rule I s ( 3b u/J Rx t3 +Ej )- --I$* 
0 

For the SU(2) doublet case this reads instead 

1 I k p+ F,“b)= -a* 
0 

Finallg one has the sum rule 
14 

c=1 t -b, .$( $Tyb)-,;(~e~ p)j i r (J.13) 0 
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where the left hand side may be interpreted the fraction of the proton’s 

momentum which is carried by neutral “gluon” constituents. The value of 

E depends on the internal dynamics of the proton as well as the structure 

of the currents and is therefore a priori unknown. Eq. (2. 13) is to be 

regarded as a way to measure e, the only constraint being the inequality 

0 5 E 5 1. The sum rule (2.13) holds in the parton model and is inde- 

pendent of the f<>rrn of the interaction since, IIf course, the usual parton 

model manipulations assume that the interactions among constituents may 

be neglected on ihe time scale which is important in the deep inelastic 

region. Eq. (2. 13) has been derived by formal field theory-light cone 

techniques 
14 

in the neutral scalar and pseudoscalar gluon models only. 

For our case of a SU(2) doublet of spin i/2 fields Eq. (2. 13) takes the 

form 

c:b 1-f 

IL 

a, (fpk F,+) -(F;ekF;eql)] l (.2* 131) 

0 
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III. PERTURBATION THEORY RESULTS 

Before stating the results of our perturbation theory calculations let 

us first recall the spirit behind such calculations. One wishes to calculate 

the imaginary part of the forward virtual Compton amplitude as illustrated 

in Fig. 2. The intermediate states, which are ultimately summed over, 

may be characterized by a multiplicity ni as well as other labels. (The 

multiplicity ni could be further broken down i lto its fermion and boson 

components, but we need not detail this here. ) The leading logarithm 

approximation which we 
1 use is defined by the following procedure: 

(i) first fix ni (rii = 1, 2, . . ), (ii) then identify in each order of perturba- 

tion theory those diagrams which are asymptotically leading in the Bjorken 

limit, (iii) calculate the leading (logarithmic) term of these diagrams, 

(iv) sum the results to all orders of perturbation theory, and (v) finally 

perform the sum over the intermediate state multiplicity n.. 1 

It is clearly possible that in a given order of perturbation theory 

cancellations occur between terms corresponding to different n.. Indeed 
1 

this partial1.y happens as one sees in Eq. (4. 19) of I. (We discuss the 

physics behind this cancellation below Eq. (3. 2) ). Therefore, if instead 

of our procedure one asks in a given, fixed order of perturbation theory 

for the leading contribution after the sum over ni has been carried out, 

and then sums this to all orders of perturbation theory, the results and 

l,ist of dominant diagrams need not coincide with the results we find. This 

latter procedure is in fact the one adopted by Gribov and Lipatov i5 in their 
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work on the vector gluon model (as well as the pseudoscalar model) and 

accounts for the difference when their results are compared to ours. 
16 

One may verify that in the region x I 1, Q’(x- 1) > > m2 where the two 

procedures are essentially equivalent (see the discussion of “scale” 

below) the expression for vW2 given in Ref. (15) coincides with our result 

in I. 

It should be emphasized that the issue 1 ere is not the question of 

whether the summations over multiplicity and orders of perturbation theory 

commute. Rather one is discussing the option of identifying leading terms 

17 
before or after carrying out the summation over ni. Obviously if one 

calculated and summed all subleading logarithms in addition to the 

leading logarithms the above distinctions would be irrelevant. However, 

since such a complete calculation is hopelessly difficult given the currently 

available calcul~ation techniques, we are confronted with the task of gleaning 

some insight from less complete perturbation calculations if we are to use 

field theory at all. Given this situation it is not obvious which particular 

approximation procedure provides the best physical insight. We feel that 

our choice as outlined above and used in I is physically sensible and a good 

one. It allows us to examine in detail all properties of the final inelastic 

states and to see how these pieces fit together to give the final expression 

for the inelastic scattering. In particular, as discussed in I, we reveal 

the interplay between the asymptotic falloff of the elastic form factor and 

the buildup of the inelastic structure functions. Related to this as shown 
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in I is a multiplicity growth - In 
2 2 18 

Q . Finally our results are fully 

consistent with the general properties that the complete answer should 

have; there are no ghost cuts or singularities, and Lorentz invariance and 

gauge invariance are maintained throughout. 

The resull for vW2 obtained in I is 

i~;~(urv$b~~)j z c etx;w2) 

* %l”l -- ~~,~~,~~,~~~~i;~~~~~~“‘r~~~--~~“~~~~ 

II 
C3.i) 

where p is the :nass of the vector particle, e is the coupling of the vector 

meson to the nucleon, and X = e2/(i6v2). The intermediate states which 

contribute to Eq. (3. 1) consist of a single fermion carrying all but an 

infinitesimal fraction of the momentum brought in by the external current 

and ni-l vector mesons which are relativistic but nevertheless “soft” 

compared to the fermion. Typical diagrams are shown in Figs. 3 and 4. 

For a given value of ni states having fermion-antifermion pairs, whether 

from closed loops or from Z graphs, are smaller by at least a logarithm 

in each order of perturbation theory than the states included in Eq. (3. 1). 

(Diffractive processes correspond to diagrams with closed fermion loops 

and warrant separate attention in any case. ) 

The result (from I) before carrying out the sum over ni but after 

summing over all orders of perturbation theory is 
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-fq 5 &p.Qy)= y-x &\ a% -r1 [ --$- JY+q$]/ 

)( [&), /2hqegq*i-z L * * cam) 
* 

By inspection of the argument of the exponent in Eq. (3. 1) we see that the 

1n2(Q/p2) terms cancel leaving vW2 - exp{4hln($) In (l-x) + 2Xln2(1-x)’ 
f’ 

This is the partial cancellation alleged above and brings us to the important 

notion of “scale”. 

In any leading logarithm calculation there is a fundamental ambiguity 

in the scale factor (call it cr) used to make the argument of the logarithm 

dimensionless. That is, if Go and ~2 are two different scale factors then 

for Q2 + m 

.Jq”-‘p@+“i[~) e iq$) 
q 

to leading logarithmic accuracy. The correct scale factor can be deter - 

mined only if next-to-leading logarithms are kept. In our work we have 

chosen a- p ‘ in order to give it the proper dimensions. Since we treat 

m21p2 = O(l), 0 - m2 would work equally well. In the inelastic structure 

functions one has an additional feature. In general the scale awill have 

x dependence. As we discussed in I the region x = 1 plays a special role 

in our work so we are careful to determing properly the x dependence of 

oin this region. That is, 
1 

we treat ln2 (Q2/p2), ln(Q2/ p’)ln( 1 -x) and 

ln’(i-x) on the same footing. i9 This is the ori,gin of the l-x factors in 
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Eqs. (3.1) and (3. 2) and the reason we do not get a zero answer after the 

cancellation in Eq. (3. 1). 

The Poisson form of Eq. (3. 2) is reminiscent of the infrared 

structure of radiative corrections in ordinary QED with massless photons 

and indeed has a very similar origin. The same applies to the partial 

cancellation in Eq. (3. 1). It is, in disguise, nothing more than the well 

known cancellaton of the infrared divergences between real and virtual 

photon processes. Let us turn to our new rer.ults. 

A. Spin Structure 

In I W2 was calculated by computing the p = v = (+) component of 

Im Trek,. To select out W, we compute the p = Y = 1 component. In each 

order of perturbation theory, as we show in Appendix A, one finds that 

the numerators in the Im T 
11 

(ep) 
calculation are universally proportional 

to the numerators of the Im T 
ce’p; 

case. The Feynman denominators are 

obviously the same, so all the work of I may be carried over unchanged. 

One finds 

&eP(,u;+ = -& gLj@) 1,~ f 0 P/a] (3m3) 

where 

Since our calculations are carried out only to leading logarithmic 

accuracy, the relation (3. 3) cannot be trusted beyond this accuracy. It 
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is natural to ask if the relation (3. 3) might in fact hold to 0(1/v) if 

subleading logarithms are summed as well. The answer is no and 

follows from explicit calculation of all O(X) diagrams. 20 
Namely, in 

O(X) Ff and F2 separately behave - 1nQ‘ but the appropriate difference 

is non vanishing 

r + 2x F; c%;(p) .- F, f+ ocJ@) 1 C3,5) 
There iS no reason to hope for a better result in higher order. Thus we 

see in perturbation theory, without cutoffs, trre Callan-Gross relation (2.4) 

is satisfied but in the weakest possible way. 

Because the neutron has no electric charge, and since pair produc- 

tion does not contribute in the leading logarithm approximation as explained 

above, we have to the same accuracy as Eq. (3. 1). 

-g “‘;x;Q~y = fy yx; @., z 0. 

Similarly since the weak currents are 

and 

Jp iFi $Jl-$5) pw 

c3,7) 

we have by the same arguments which lead to Eq. (3. 6) 
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~kz $: y 0 t = 
.i 

Id2, 3 . 

To calculate F2 ;P and FiYP we look at the in = v = + and p = v = 1 

components respectively of Im T !” 
(VP). 

The calculation is identical to that 

in I so one knows immediately 

In Eq. (3. 10) the factor of 2 arises because the square of the vector current 

and the square of the axial vector current cor.tribute equally. (See Appendix 

A.) In direct parallel to Eq. (3. 5) one has 

-2% F;SxLq) = ~,Pr~;~y[k- mi~j] (3,11) 

where 3 = Ek, Z),?c c 

Finally the vector-axial vector interference structure function F3 

12 may be picked out by evaluating Im T - (Vp); we find (see Appendix A) 

Ej 517 ix;@)= ~“~~j@Z)~z -$ F,e{$;GL)e 
(30 12) 

B. Internal Symmetry Relations 

Combining Eqs. (3. 3), (3. 6), (3. 9), and (3. 12) one sees that the 

Llewellyn Smith equality (2. 7 ‘) is satisfied in the leading logarithmic 

approximation. So also is his relation (2. 8’) (now an equality) once 

Eqs. (3. 3), (3. 6), (3. 9), and (3. 11) are used. Just as with the Callan- 

Gross relation (see Fq, (3. 3)), the Llewellyn Smith relations (2. 7’) and 
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(2. 8’) are satisfied to leading logarithmic accuracy only. 

C. Sum Rules 

With the exception of the Adler sum rule, the sum rules discussed 

in Sec. II put stringent demands on perturbat:,on theory. Namely certain 

integrals of the structure functions over x are required to be independent 

of Q2 in spite of the fact that the structure fu~nctions themselves do not 

scale. 

In I we ev4uated the two integrals 

using Eq. (3. 1) for F2. In both integrals the region x =, 1 is dominant and 

we have to leading logarithmic accuracy 

c (Q2j= 1 
i 

~2(Q2)_ 1 l 

@/S) 

13&T) 

We note that Ct and X2 are independent of QZ to the accuracy of our 

calculation. 

Using l?qs. (3. 9), (3. 10) and (3. 16) the Adler sum rule (2. 10) reads 
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and is therefore satisfied to leading logarithmic accuracy. Similarly the 

“backward” lljorken sum rule (2. it) is satisfied. With the help of Eqs. (3. 9), 

(3. f2), and (3. 15) the Gross-Llewellyn Smith :um rule (2. i2; reduces to 

-.z cL(Q’) = -.-? 

and is therefore satisfied. 

Lastly we have the sum rule (2.13’). Using Eqs. (3. f), (3. 6), (3. 9) 

and (3. 10) we have 

t=.I-~~C,(a’3.-C,(4’!1- (3. 
Thus from Eq. (3. 15) we learn that the gluons in the neutral vector meson 

theory carry zero fraction of the nucleonfs momentum in the leading 

logarithmic approximation. This is in complete accord with our direct 

calculation of the gluon momentum, Eq. (5. 6) of I. A formal field theory 

derivation of Eq.. (2. 13’) (or equivalently Eq. (2. 13) ) has not yet been 

achieved for the vector gluon theory. This difficulty may be related to 

backward travelling partons in the parton model language. 
21 We see in 

the leading logarithm approximation, at least, there are no problems. The 

gluons carry a vanishingly small fraction of the nucleonIs momentum and 

Eq. (2. 13’) is satisfied in the same way that all the other sum rules are 

satisfied. 
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IV. COMMENTS 

Sec. III already contains extensive discussions of our methods and 

results. Rather than repeating this discussion here let us instead list a 

few directions in which our work may be extended. It is natural to ask 

what can be done about the violation of Bjorkei! scaling which comes from 

lnQ2 factors in each order of perturbation theory. Such logarithms seem 

characteristic of all renormalizable (as opposl!d to superrenormalizable) 

field theories. 

One can, in the spirit of Drell, Levy, and Yan 
22 

impose an ad hoc -- 

transverse momentum cutoff and investigate the resulting model. Arbi- 

trary modifications of field theory are always hazardous, but we will 

nevertheless report on the cutoff vector gluon model in a subsequent paper. 

A physically more satisfactory way to generate the damping needed to 

obtain Rjorken scaling is to realize the target nucleons ads bound states of 

some set of elementary particles, say an SU(3) triplet of quarks. (A 

heuristic treatment of nucleon? as a three quark system can be found in 

Ref. (if). ) This’ would remove the perhaps objectionable feature that the 

nucleons in our work so far are bare particles clothed in a cloud of 

neutral vector mesons and are not truly composite. Important problems 

would still remain, nevertheless. Composite nucleons made of point-like 

23 
particles, as for example in the Rethe-Salpeter model of Drell and Lee, 

are still likely to violate scaling when meson emission from the point like 

constituents is included. We will comment further on this point in our 
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coming paper on the cutoff field theory model. Perhaps an infinitely 

composite picture, analogous to the one used by Stack 
24 

to discuss elastic 

form factors, is required to achieve Bjorken scaling. 

An alternative and exciting possibility is to return to the unadorned 

neutral vector gluon model and to adopt a pain; of view analogous to that of 

Johnson, Baker md Willey. 
25 These authors have investigated the questio-.i 

of whether or no- ordinary quantum electrodyi\amics can be a self-consistelit, 

finite field theory. In particular one cannot help but wonder if the eigenvalue 

condition which they find necessary for finite QED might simultaneously 

secure Bjorken scaling. 
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APPENDIX A 

In this appendix we present the algebraic details behind the results 

quoted in Sec. III, All calculations are carried out in the notation and 

reference frame of I. Namely we use the f, - notation 

a’= ((pJ ((, a”, a-)= ( &+Gf ($ a’, d-c3j= [CL-; z, c) 
CW 

where a is any four vector. The frame is fixed by 

(A.2) 

r. 
1, ( 

z olsLr; ,,cJ q,,cd ) z (0~6~ 6,2r+j 

&J) 
where p is the momentum of the target nucleon and q = P - 1’ is the 

momentum transfer from the lepton system; Fig. 1. The quantity se N 

is the square of the center of mass energy of the initial lepton-nucleon 

pair. The momentum of any produced particle may be written 

px (x;, &;, myq. 
; 

(Note that in writing Eqs. (A. Z), (A. 3) and (A. 4) we have scaled the 

+ and - components to make the former dimensionless and to give the 

latter dimensions of mass squared. ) 

In terms of this notation it is clear from Eqs. (2. 1) and (2. 2) that 

I xJ++ 
-K I 

’ =- 
l- 4\c 

.r by- 

r ;7mft(T = b\k 
T 

l-c 
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and 

for c=?JtJ cw&jh). 
For the Bo:*n term (Fig. 5) Eqs. (5. 3), (3. IO), (3, 11) and (3. 12) are 

trivial to verify. Consider Fig. 3(a) which is one of the diagrams which 

makes a leading contribution in O( X), , 

where 

and 

D = [ +h,]~~~2] [(~+&u.2~ 

In I we showed that in computing the leading term of N 
++ (lj+r# 
ep 

one may make the 

approximations 

+A+ ]b -?9;6’- ,~ 

j$+$, -3 8 -3 -Qb 
$L da --3 ;(f-24’) 

)b’i4 -a ~c~-~, e-Q i? 

ys-l/,tw 9 e-q, .+I2 cwl)K- 



-24- THY - 33 

Thus to leading order 

h.l 
;;= QMJT+-f+fy d’dW/ 

B 

- j& Q2WX,) 

For N;; the leacling term comes from 

&?ti +- jb -+f &?ti +- jb -+f 
~~+-vA -> $ 272 (2wll)) f- [$+-$.A -> $ 272 (2wll)) f- 
f&a/& .,+9-i (C-J CT+) f&a/& +e 2 I C-J CT+) 

p+- 4i 3 d -9; c~44nn~ P- p+ 4i 3 d -9; c~4420 P- 

j+- q, +m -+? b-f, .-q Ii-S,) if-y 

Hence to leading order 

31 
Nq = 

cvw~)2 &+,)Ir 

“?z-- 

2 8,hi’L\ (I-X,) (21M2)) = 8na2)CI-SG) CQ’/x). (d,,2) 

Thus for Fig. 3(a) 

which in turn implies Eq. (3. 11). 
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For the general case, Fig. 4(a), the numerator trace is of the form 

(dropping terms - m) 

N ~=-r;..E~~~~riji+~.-~~~)-n- (]l+jf-&~f’-] 
,j= I i.=r . 

Hence the leading terms are 

h) c;‘= -q F 0 0 y’(-q p) a-0 [-Q P) pm0 
! @-IS) 

and 

where all unwritten terms are identical in the two traces and consist of a 

series of v 
+ 

Is interlaced with y -1 s. After successive anticommutation to 

bring the ~‘1s and yils together in Eqs. (A. 15) and (A.16) respectively one 

establishes Eq. (A. 13) as a general result and hence the Callan-Gross 

relation. 

Consider next the structure functions for neutrino scattering. We 

will illustrate the calculation for Fig. 3(a) only since the extension to the 

general case is obvious from the above, In place of (A. 10) one has 

As before we may drop all terms - m, and therefore after running the 

i- y5 factors together we have 
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+i- 
For N- and N t’ the second term in Eq. (A. 18) gives a negligible 

“P “P 

contribution which moreover vanishes after th,? phase space integration 

over ct is carried out in Eq. (A. 8). Thus the results quoted in Eqs. (3. 10) 

and (3. 11) are established. 

12 
For N- 

VP 
the first term in Eq. (A. 18) is negligible; the second may 

be simplified to 

[\I; 

b 

= ,T,ld,(~d3~1~/l~~~~+~~? ‘w*pJy2[~ iI-wd+)adJ 

s ;6; 1111’lJ Q2wG)/ti 0 (A. IS) 

Therefore with the help of Eqs. (A. 5), (A. 7), and (A. 11) we establish the 

result quoted in Eq. (3. 12) of Sec. III. 
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APPENDIX B 

Were we briefly examine the field theory of charged spin zero 

particles (say pions) interacting with massive neutral vector mesons. We 

consider an i,sotriplet of charged pions interac:ing with the isoscalar vector 

field. The theor:. is much simpler than the spinor theory since an axial 

current cannot bcl constructed which is bilinear in the spin zero field. 

In Appendix B of I we calculated in the leading logarithmic approximation 
f 

FZe” . Here we correct a slight error in th;t calculation which was made 

when we neglectfld the “seagull” diagrams. 

In lowest nontrivial order diagrams which make leading contributions 

to Im T 
ff 

(en*) are the ones shown in Fig. 6(a-d). Diagram 6(a) was 

considered in I and has a numerator 

EJ+?d = fx$c2-%i) CM)/i 0 
The denominators and all other factors are the same as in the spinor case. 

(See Eqs. (A. 8-A. 10) . ) 

The “seagull” diagram 6(b) has a numerator 

N”‘lbb> - - 8 L/-%1 )CZ-Xi), @Z) 

Furthermore, except for lacking a denominator factor 

I (P+9)2-m21 = Q2(1-x)/x diagram 6(b) has a structure identical to that of 

++ 
6(a). The sum of 6(a) and 6(b) is therefore found by replacing N of the 

spinor calculation by 
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After carrying out the phase space integrations in Eq. (A. 8) the value of 

x1 
is fixed to be x 1 

= l-x. Thus we find 

F”XL = c ) e);l L r& F; L 0 
The pattern generalizes in an obvious way; thus Eq. (B. 4) holds in every 

order of perturbation theory. Eq. (B. 4) differs from the result quoted in 

I by a factor of x. Since the sum rules are dominated by the region x = 1 

they are unaffected. 

One may alternatively identify vW2 by computing Im T 
22 

. If one 

does this one finds that the leading contributions come only from Fig. 6(a) 

and not from the “seagull” Fig. 6(b). Of course, the result is identical to 

that given in Eq. (B. 4), as gauge invariance dictates. 
* 

To calculate Wiei’ we consider Im T 11 
(ev )’ 

Diagram 6(a) gives a 

vanishing contribution and all seagull diagrams give contributions which 

are down by a power of Q2. Thus 

jy fmirf = I 0 @,5) 

in the leading logarithmic approximation. This is the Callan-Gross 

relation8 for currents constructed from spin zero fields. 

The neutrino scattering results are related to the ~electron scattering 

results by a simple Clebsch-Gordan coefficient. Namely 



-29- THY - 33 

Q= 2 pk ; 
+ 0 - 

where 4 = CT , CT , YTI , Y’II 
0 

and 

i=1,2 (i3.b) 

for p = ik-, VTT+. Moreover, because of the absence of an axial vector 

contribution. 

F3 = 0 ( B.Q 
in all cases. 
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FIGURE CAPTIONS 
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Fig. 1 Kinematics for lepton-nucleon inelastic scattering. 

Fig. 2 Diagram representing the discontinuity of the forward virtual 

Compton amplitude. The intermediate states are on shell and 

have a multiplicity ni. 

Fig. 3 Diagrams of O(X) which make a leading contribution in the 

Bjorken limit. The vertical line represents the unitarity cut anal 

crosses those lines which are on shell. 

Fig. 4 Leading diagrams in the general case. We sum over all per- 

mutations of the emission of the P photons on the left side and 

all permutations of absorption of the r photons on the right. 

(a) All vector mesons are real. (b) Diagrams which have some 

virtual vector mesons which build up the elastic form factor 

corrections to the external current vertices. 

Fig. 5 The Born term for inelastic lepton-nucleon scattering. 

Fig. 6 Leading diagrams in O(X) in the scalar-vector field theory. 

In addition to the ones shown one has virtual photon diagrams 

as in Fig. 3(b) and (d). 
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